Nuprl Lemma : Process-stream_wf
∀[M:Type ⟶ Type]
  ∀[msgs:pMsg(P.M[P]) List]. ∀[P:Process(P.M[P])].  (Process-stream(P;msgs) ∈ pExt(P.M[P]) List) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
Process-stream: Process-stream(P;msgs), 
pExt: pExt(P.M[P]), 
pMsg: pMsg(P.M[P]), 
Process: Process(P.M[P]), 
list: T List, 
strong-type-continuous: Continuous+(T.F[T]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
Process-stream: Process-stream(P;msgs), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
cons: [a / b], 
colength: colength(L), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
guard: {T}, 
decidable: Dec(P), 
nil: [], 
it: ⋅, 
sq_type: SQType(T), 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
dataflow-ap: df(a), 
Process-apply: Process-apply(P;m)
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[msgs:pMsg(P.M[P])  List].  \mforall{}[P:Process(P.M[P])].    (Process-stream(P;msgs)  \mmember{}  pExt(P.M[P])  List) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-10_23_53
Last ObjectModification:
2016_01_18-AM-00_19_00
Theory : process-model
Home
Index