Nuprl Lemma : assert-lg-is-source
∀[T:Type]. ∀[g:LabeledGraph(T)]. ∀[i:ℕlg-size(g)].  uiff(↑lg-is-source(g;i);∀[j:ℕlg-size(g)]. (¬lg-edge(g;j;i)))
Proof
Definitions occuring in Statement : 
lg-is-source: lg-is-source(g;i), 
lg-edge: lg-edge(g;a;b), 
lg-size: lg-size(g), 
labeled-graph: LabeledGraph(T), 
int_seg: {i..j-}, 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
not: ¬A, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
lg-edge: lg-edge(g;a;b), 
lg-is-source: lg-is-source(g;i), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
int_seg: {i..j-}, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
not: ¬A, 
false: False, 
top: Top, 
prop: ℙ, 
rev_uimplies: rev_uimplies(P;Q), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
nat: ℕ, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
cons: [a / b], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Latex:
\mforall{}[T:Type].  \mforall{}[g:LabeledGraph(T)].  \mforall{}[i:\mBbbN{}lg-size(g)].
    uiff(\muparrow{}lg-is-source(g;i);\mforall{}[j:\mBbbN{}lg-size(g)].  (\mneg{}lg-edge(g;j;i)))
Date html generated:
2016_05_17-AM-10_10_46
Last ObjectModification:
2016_01_18-AM-00_22_14
Theory : process-model
Home
Index