Nuprl Lemma : classfun-res-disjoint-union-comb-left
∀[Info,A,B:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[e:E].
  (X (+) Y@e = (inl X@e) ∈ (A + B)) supposing 
     (single-valued-classrel(es;X;A) and 
     disjoint-classrel(es;A;X;B;Y) and 
     (↑e ∈b X))
Proof
Definitions occuring in Statement : 
disjoint-union-comb: X (+) Y, 
classfun-res: X@e, 
single-valued-classrel: single-valued-classrel(es;X;T), 
disjoint-classrel: disjoint-classrel(es;A;X;B;Y), 
member-eclass: e ∈b X, 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
inl: inl x, 
union: left + right, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
disjoint-union-comb: X (+) Y, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
prop: ℙ, 
not: ¬A, 
false: False, 
lifting-1: lifting-1(f), 
lifting1: lifting1(f;b), 
lifting-gen-rev: lifting-gen-rev(n;f;bags), 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags), 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
single-bag: {x}, 
bag-null: bag-null(bs), 
top: Top, 
assert: ↑b, 
decidable: Dec(P), 
or: P ∨ Q, 
squash: ↓T, 
exists: ∃x:A. B[x], 
classfun-res: X@e, 
simple-comb-1: F|X|, 
classfun: X(e), 
simple-comb: simple-comb(F;Xs), 
select: L[n], 
cons: [a / b], 
eclass: EClass(A[eo; e]), 
iff: P ⇐⇒ Q
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[e:E].
    (X  (+)  Y@e  =  (inl  X@e))  supposing 
          (single-valued-classrel(es;X;A)  and 
          disjoint-classrel(es;A;X;B;Y)  and 
          (\muparrow{}e  \mmember{}\msubb{}  X))
Date html generated:
2016_05_17-AM-11_16_13
Last ObjectModification:
2015_12_29-PM-05_13_04
Theory : process-model
Home
Index