Nuprl Lemma : classfun-res-parallel-class-left
∀[Info,A:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(A)]. ∀[e:E].
  (X || Y@e ~ X@e) supposing (disjoint-classrel(es;A;X;A;Y) and (↑e ∈b X))
Proof
Definitions occuring in Statement : 
parallel-class: X || Y, 
classfun-res: X@e, 
disjoint-classrel: disjoint-classrel(es;A;X;B;Y), 
member-eclass: e ∈b X, 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
classfun-res: X@e, 
parallel-class: X || Y, 
classfun: X(e), 
eclass-compose2: eclass-compose2(f;X;Y), 
disjoint-classrel: disjoint-classrel(es;A;X;B;Y), 
all: ∀x:A. B[x], 
member: t ∈ T, 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
squash: ↓T, 
false: False, 
exists: ∃x:A. B[x], 
not: ¬A, 
classrel: v ∈ X(e), 
eclass: EClass(A[eo; e]), 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
prop: ℙ
Latex:
\mforall{}[Info,A:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(A)].  \mforall{}[e:E].
    (X  ||  Y@e  \msim{}  X@e)  supposing  (disjoint-classrel(es;A;X;A;Y)  and  (\muparrow{}e  \mmember{}\msubb{}  X))
Date html generated:
2016_05_17-AM-11_15_58
Last ObjectModification:
2015_12_29-PM-05_12_23
Theory : process-model
Home
Index