Nuprl Lemma : classfun-res-parallel-class-left
∀[Info,A:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(A)]. ∀[e:E].
(X || Y@e ~ X@e) supposing (disjoint-classrel(es;A;X;A;Y) and (↑e ∈b X))
Proof
Definitions occuring in Statement :
parallel-class: X || Y
,
classfun-res: X@e
,
disjoint-classrel: disjoint-classrel(es;A;X;B;Y)
,
member-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
universe: Type
,
sqequal: s ~ t
Definitions unfolded in proof :
classfun-res: X@e
,
parallel-class: X || Y
,
classfun: X(e)
,
eclass-compose2: eclass-compose2(f;X;Y)
,
disjoint-classrel: disjoint-classrel(es;A;X;B;Y)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
or: P ∨ Q
,
uall: ∀[x:A]. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
squash: ↓T
,
false: False
,
exists: ∃x:A. B[x]
,
not: ¬A
,
classrel: v ∈ X(e)
,
eclass: EClass(A[eo; e])
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
prop: ℙ
Latex:
\mforall{}[Info,A:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[X,Y:EClass(A)]. \mforall{}[e:E].
(X || Y@e \msim{} X@e) supposing (disjoint-classrel(es;A;X;A;Y) and (\muparrow{}e \mmember{}\msubb{} X))
Date html generated:
2016_05_17-AM-11_15_58
Last ObjectModification:
2015_12_29-PM-05_12_23
Theory : process-model
Home
Index