Nuprl Lemma : comm-create_wf
∀[M:Type ⟶ Type]. ∀[c:pCom(P.M[P])].  comm-create(c) ∈ Process(P.M[P]) supposing com-kind(c) = "create" ∈ Atom
Proof
Definitions occuring in Statement : 
comm-create: comm-create(c), 
com-kind: com-kind(c), 
pCom: pCom(P.M[P]), 
Process: Process(P.M[P]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
token: "$token", 
atom: Atom, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
prop: ℙ, 
pCom: pCom(P.M[P]), 
Com: Com(P.M[P]), 
tagged+: T |+ z:B, 
and: P ∧ Q, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
tag-case: z:T, 
comm-create: comm-create(c), 
com-kind: com-kind(c), 
tagged-val: x.val, 
tagged-tag: x.tag, 
pi1: fst(t), 
pi2: snd(t), 
not: ¬A, 
false: False, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bfalse: ff
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[c:pCom(P.M[P])].
    comm-create(c)  \mmember{}  Process(P.M[P])  supposing  com-kind(c)  =  "create"
Date html generated:
2016_05_17-AM-10_23_18
Last ObjectModification:
2015_12_29-PM-05_27_47
Theory : process-model
Home
Index