Nuprl Lemma : dataflow-ap_wf
∀[A,B:Type]. ∀[df:dataflow(A;B)]. ∀[a:A]. (df(a) ∈ dataflow(A;B) × B)
Proof
Definitions occuring in Statement :
dataflow-ap: df(a)
,
dataflow: dataflow(A;B)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
product: x:A × B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
dataflow-ap: df(a)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
guard: {T}
,
uimplies: b supposing a
Latex:
\mforall{}[A,B:Type]. \mforall{}[df:dataflow(A;B)]. \mforall{}[a:A]. (df(a) \mmember{} dataflow(A;B) \mtimes{} B)
Date html generated:
2016_05_17-AM-10_20_10
Last ObjectModification:
2015_12_29-PM-05_30_14
Theory : process-model
Home
Index