Nuprl Lemma : dataflow-equiv_transitivity
∀[A,B:Type]. ∀[f,g,h:dataflow(A;B)]. (f ≡ h) supposing (f ≡ g and g ≡ h)
Proof
Definitions occuring in Statement :
dataflow-equiv: d1 ≡ d2
,
dataflow: dataflow(A;B)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
dataflow-equiv: d1 ≡ d2
,
all: ∀x:A. B[x]
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
prop: ℙ
Latex:
\mforall{}[A,B:Type]. \mforall{}[f,g,h:dataflow(A;B)]. (f \mequiv{} h) supposing (f \mequiv{} g and g \mequiv{} h)
Date html generated:
2016_05_17-AM-10_22_00
Last ObjectModification:
2015_12_29-PM-05_28_45
Theory : process-model
Home
Index