Nuprl Lemma : dataflow-to-Process_functionality
∀[A,B:Type]. ∀[F1,F2:dataflow(A;B)]. ∀[g:B ⟶ LabeledDAG(Id × (Com(P.A) Process(P.A)))].
dataflow-to-Process(F1;g)≡dataflow-to-Process(F2;g) supposing F1 ≡ F2
Proof
Definitions occuring in Statement :
dataflow-to-Process: dataflow-to-Process,
process-equiv: process-equiv,
Process: Process(P.M[P])
,
Com: Com(P.M[P])
,
dataflow-equiv: d1 ≡ d2
,
dataflow: dataflow(A;B)
,
ldag: LabeledDAG(T)
,
Id: Id
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
process-equiv: process-equiv,
all: ∀x:A. B[x]
,
Process-stream: Process-stream(P;msgs)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
,
pMsg: pMsg(P.M[P])
,
dataflow-equiv: d1 ≡ d2
,
squash: ↓T
,
pExt: pExt(P.M[P])
,
pCom: pCom(P.M[P])
,
true: True
Latex:
\mforall{}[A,B:Type]. \mforall{}[F1,F2:dataflow(A;B)]. \mforall{}[g:B {}\mrightarrow{} LabeledDAG(Id \mtimes{} (Com(P.A) Process(P.A)))].
dataflow-to-Process(F1;g)\mequiv{}dataflow-to-Process(F2;g) supposing F1 \mequiv{} F2
Date html generated:
2016_05_17-AM-10_24_24
Last ObjectModification:
2016_01_18-AM-00_18_21
Theory : process-model
Home
Index