Nuprl Lemma : dataflow-to-Process_functionality
∀[A,B:Type]. ∀[F1,F2:dataflow(A;B)]. ∀[g:B ⟶ LabeledDAG(Id × (Com(P.A) Process(P.A)))].
  dataflow-to-Process(F1;g)≡dataflow-to-Process(F2;g) supposing F1 ≡ F2
Proof
Definitions occuring in Statement : 
dataflow-to-Process: dataflow-to-Process, 
process-equiv: process-equiv, 
Process: Process(P.M[P]), 
Com: Com(P.M[P]), 
dataflow-equiv: d1 ≡ d2, 
dataflow: dataflow(A;B), 
ldag: LabeledDAG(T), 
Id: Id, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
process-equiv: process-equiv, 
all: ∀x:A. B[x], 
Process-stream: Process-stream(P;msgs), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
pMsg: pMsg(P.M[P]), 
dataflow-equiv: d1 ≡ d2, 
squash: ↓T, 
pExt: pExt(P.M[P]), 
pCom: pCom(P.M[P]), 
true: True
Latex:
\mforall{}[A,B:Type].  \mforall{}[F1,F2:dataflow(A;B)].  \mforall{}[g:B  {}\mrightarrow{}  LabeledDAG(Id  \mtimes{}  (Com(P.A)  Process(P.A)))].
    dataflow-to-Process(F1;g)\mequiv{}dataflow-to-Process(F2;g)  supposing  F1  \mequiv{}  F2
Date html generated:
2016_05_17-AM-10_24_24
Last ObjectModification:
2016_01_18-AM-00_18_21
Theory : process-model
Home
Index