Nuprl Lemma : dataflow-to-Process_wf
∀[A,B:Type]. ∀[F:dataflow(A;B)]. ∀[g:B ⟶ LabeledDAG(Id × (Com(P.A) Process(P.A)))].
  (dataflow-to-Process(
   F;
   g) ∈ Process(P.A))
Proof
Definitions occuring in Statement : 
dataflow-to-Process: dataflow-to-Process, 
Process: Process(P.M[P]), 
Com: Com(P.M[P]), 
dataflow: dataflow(A;B), 
ldag: LabeledDAG(T), 
Id: Id, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
dataflow-to-Process: dataflow-to-Process, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B
Latex:
\mforall{}[A,B:Type].  \mforall{}[F:dataflow(A;B)].  \mforall{}[g:B  {}\mrightarrow{}  LabeledDAG(Id  \mtimes{}  (Com(P.A)  Process(P.A)))].
    (dataflow-to-Process(
      F;
      g)  \mmember{}  Process(P.A))
Date html generated:
2016_05_17-AM-10_24_15
Last ObjectModification:
2015_12_29-PM-05_27_22
Theory : process-model
Home
Index