Nuprl Lemma : deliver-msg-to-comp_wf
∀[M:Type ⟶ Type]
  ∀[t:ℕ]. ∀[x:Id]. ∀[m:pMsg(P.M[P])]. ∀[S:System(P.M[P])]. ∀[C:component(P.M[P])].
    (deliver-msg-to-comp(t;m;x;S;C) ∈ System(P.M[P])) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
deliver-msg-to-comp: deliver-msg-to-comp(t;m;x;S;C), 
System: System(P.M[P]), 
component: component(P.M[P]), 
pMsg: pMsg(P.M[P]), 
Id: Id, 
strong-type-continuous: Continuous+(T.F[T]), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
deliver-msg-to-comp: deliver-msg-to-comp(t;m;x;S;C), 
System: System(P.M[P]), 
component: component(P.M[P]), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[t:\mBbbN{}].  \mforall{}[x:Id].  \mforall{}[m:pMsg(P.M[P])].  \mforall{}[S:System(P.M[P])].  \mforall{}[C:component(P.M[P])].
        (deliver-msg-to-comp(t;m;x;S;C)  \mmember{}  System(P.M[P])) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-10_37_58
Last ObjectModification:
2015_12_29-PM-05_25_47
Theory : process-model
Home
Index