Nuprl Lemma : deliver-msg_wf
∀[M:Type ⟶ Type]
  ∀[t:ℕ]. ∀[x:Id]. ∀[m:pMsg(P.M[P])]. ∀[L:LabeledDAG(pInTransit(P.M[P]))]. ∀[Cs:component(P.M[P]) List].
    (deliver-msg(t;m;x;Cs;L) ∈ System(P.M[P])) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
deliver-msg: deliver-msg(t;m;x;Cs;L), 
System: System(P.M[P]), 
pInTransit: pInTransit(P.M[P]), 
component: component(P.M[P]), 
pMsg: pMsg(P.M[P]), 
ldag: LabeledDAG(T), 
Id: Id, 
list: T List, 
strong-type-continuous: Continuous+(T.F[T]), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
deliver-msg: deliver-msg(t;m;x;Cs;L), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
System: System(P.M[P]), 
all: ∀x:A. B[x], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
prop: ℙ
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[t:\mBbbN{}].  \mforall{}[x:Id].  \mforall{}[m:pMsg(P.M[P])].  \mforall{}[L:LabeledDAG(pInTransit(P.M[P]))].
    \mforall{}[Cs:component(P.M[P])  List].
        (deliver-msg(t;m;x;Cs;L)  \mmember{}  System(P.M[P])) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-10_38_09
Last ObjectModification:
2015_12_29-PM-05_25_36
Theory : process-model
Home
Index