Nuprl Lemma : do-chosen-command_wf
∀[M:Type ⟶ Type]
  ∀[nat2msg:ℕ ⟶ pMsg(P.M[P])]. ∀[loc2msg:Id ⟶ pMsg(P.M[P])]. ∀[S:System(P.M[P])]. ∀[t,n,m:ℕ]. ∀[nm:Id].
    (do-chosen-command(nat2msg;loc2msg;t;S;n;m;nm) ∈ ℤ × Id × Id × pMsg(P.M[P])? × System(P.M[P])) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
do-chosen-command: do-chosen-command(nat2msg;loc2msg;t;S;n;m;nm), 
System: System(P.M[P]), 
pMsg: pMsg(P.M[P]), 
Id: Id, 
strong-type-continuous: Continuous+(T.F[T]), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
unit: Unit, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
union: left + right, 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
do-chosen-command: do-chosen-command(nat2msg;loc2msg;t;S;n;m;nm), 
let: let, 
System: System(P.M[P]), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ldag: LabeledDAG(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
lg-is-source: lg-is-source(g;i), 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
pInTransit: pInTransit(P.M[P]), 
spreadn: spread3, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[nat2msg:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P])].  \mforall{}[loc2msg:Id  {}\mrightarrow{}  pMsg(P.M[P])].  \mforall{}[S:System(P.M[P])].  \mforall{}[t,n,m:\mBbbN{}].
    \mforall{}[nm:Id].
        (do-chosen-command(nat2msg;loc2msg;t;S;n;m;nm)  \mmember{}  \mBbbZ{}  \mtimes{}  Id  \mtimes{}  Id  \mtimes{}  pMsg(P.M[P])?  \mtimes{}  System(P.M[P])) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-10_39_24
Last ObjectModification:
2015_12_29-PM-05_25_32
Theory : process-model
Home
Index