Nuprl Lemma : first-choosable-property
∀[M:Type ⟶ Type]. ∀[r:pRunType(P.M[P])]. ∀[t:ℕ+]. ∀[n:ℕ].
  first-choosable(r;t) ≤ n supposing ↑lg-is-source(run-intransit(r;t);n)
Proof
Definitions occuring in Statement : 
first-choosable: first-choosable(r;t), 
run-intransit: run-intransit(r;t), 
pRunType: pRunType(T.M[T]), 
lg-is-source: lg-is-source(g;i), 
nat_plus: ℕ+, 
nat: ℕ, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
le: A ≤ B, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
first-choosable: first-choosable(r;t), 
let: let, 
run-intransit: run-intransit(r;t), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
ldag: LabeledDAG(T), 
subtype_rel: A ⊆r B, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
int_seg: {i..j-}, 
sq_stable: SqStable(P), 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
lelt: i ≤ j < k, 
nat_plus: ℕ+, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
less_than: a < b
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].  \mforall{}[t:\mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}].
    first-choosable(r;t)  \mleq{}  n  supposing  \muparrow{}lg-is-source(run-intransit(r;t);n)
Date html generated:
2016_05_17-AM-10_55_04
Last ObjectModification:
2016_01_18-AM-00_13_43
Theory : process-model
Home
Index