Step
*
of Lemma
first-choosable_wf
∀[M:Type ⟶ Type]. ∀[t:ℕ+]. ∀[r:ℕt ⟶ (ℤ × Id × Id × pMsg(P.M[P])? × System(P.M[P]))]. (first-choosable(r;t) ∈ ℕ)
BY
{ ((UnivCD THENA Auto) THEN RepUR ``first-choosable let`` 0) }
1
1. M : Type ⟶ Type
2. t : ℕ+
3. r : ℕt ⟶ (ℤ × Id × Id × pMsg(P.M[P])? × System(P.M[P]))
⊢ if 0 <z search(lg-size(snd(run-system(r;t)));λn.lg-is-source(snd(run-system(r;t));n))
then search(lg-size(snd(run-system(r;t)));λn.lg-is-source(snd(run-system(r;t));n)) - 1
else search(lg-size(snd(run-system(r;t)));λn.lg-is-source(snd(run-system(r;t));n))
fi ∈ ℕ
Latex:
Latex:
\mforall{}[M:Type {}\mrightarrow{} Type]. \mforall{}[t:\mBbbN{}\msupplus{}]. \mforall{}[r:\mBbbN{}t {}\mrightarrow{} (\mBbbZ{} \mtimes{} Id \mtimes{} Id \mtimes{} pMsg(P.M[P])? \mtimes{} System(P.M[P]))].
(first-choosable(r;t) \mmember{} \mBbbN{})
By
Latex:
((UnivCD THENA Auto) THEN RepUR ``first-choosable let`` 0)
Home
Index