Nuprl Lemma : in-simple-loc-comb-1-concat
∀[Info,A,B:Type]. ∀[f:Id ⟶ A ⟶ bag(B)]. ∀[X:EClass(A)]. ∀[es:EO+(Info)]. ∀[e:E].
(Singlevalued(X)
⇒ (∀i:Id. ∀a:A. (#(f i a) ≤ 1))
⇒ e ∈b f@(Loc, X) = e ∈b X ∧b (¬bbag-null(f loc(e) X(e))))
Proof
Definitions occuring in Statement :
concat-lifting-loc-1: f@
,
simple-loc-comb-1: F(Loc, X)
,
sv-class: Singlevalued(X)
,
eclass-val: X(e)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
band: p ∧b q
,
bnot: ¬bb
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
,
bag-size: #(bs)
,
bag-null: bag-null(bs)
,
bag: bag(T)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
sv-class: Singlevalued(X)
,
simple-loc-comb-1: F(Loc, X)
,
simple-loc-comb: F|Loc; Xs|
,
select: L[n]
,
cons: [a / b]
,
concat-lifting-loc-1: f@
,
concat-lifting1-loc: concat-lifting1-loc(f;bag;loc)
,
concat-lifting-loc: concat-lifting-loc(n;bags;loc;f)
,
in-eclass: e ∈b X
,
concat-lifting: concat-lifting(n;f;bags)
,
concat-lifting-list: concat-lifting-list(n;bags)
,
lifting-gen-list-rev: lifting-gen-list-rev(n;bags)
,
eq_int: (i =z j)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
btrue: tt
,
eclass: EClass(A[eo; e])
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
band: p ∧b q
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
nequal: a ≠ b ∈ T
,
not: ¬A
,
eclass-val: X(e)
,
rev_uimplies: rev_uimplies(P;Q)
,
iff: P
⇐⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
rev_implies: P
⇐ Q
,
decidable: Dec(P)
,
ge: i ≥ j
,
le: A ≤ B
Latex:
\mforall{}[Info,A,B:Type]. \mforall{}[f:Id {}\mrightarrow{} A {}\mrightarrow{} bag(B)]. \mforall{}[X:EClass(A)]. \mforall{}[es:EO+(Info)]. \mforall{}[e:E].
(Singlevalued(X)
{}\mRightarrow{} (\mforall{}i:Id. \mforall{}a:A. (\#(f i a) \mleq{} 1))
{}\mRightarrow{} e \mmember{}\msubb{} f@(Loc, X) = e \mmember{}\msubb{} X \mwedge{}\msubb{} (\mneg{}\msubb{}bag-null(f loc(e) X(e))))
Date html generated:
2016_05_17-AM-11_17_04
Last ObjectModification:
2016_01_18-AM-00_12_29
Theory : process-model
Home
Index