Step
*
1
1
1
1
2
of Lemma
lg-acyclic-has-source
1. [T] : Type
2. g : LabeledGraph(T)@i
3. 0 < lg-size(g)
4. ∀i:ℕlg-size(g). ∃j:ℕlg-size(g). lg-edge(g;j;i)
5. f : i:ℕlg-size(g) ⟶ ℕlg-size(g)
6. ∀i:ℕlg-size(g). lg-edge(g;f i;i)
7. m : ℤ@i
8. 0 < m
9. ∀n:ℕ. lg-connected(g;f^n + m 0;f^n 0)@i
10. n : ℕ@i
⊢ lg-connected(g;f^n + m + 1 0;f^n 0)
BY
{ (Using [`b',⌜f^n + m 0⌝] (BLemma `lg-connected_transitivity`)⋅ THENA (Auto THEN Auto')) }
1
1. [T] : Type
2. g : LabeledGraph(T)@i
3. 0 < lg-size(g)
4. ∀i:ℕlg-size(g). ∃j:ℕlg-size(g). lg-edge(g;j;i)
5. f : i:ℕlg-size(g) ⟶ ℕlg-size(g)
6. ∀i:ℕlg-size(g). lg-edge(g;f i;i)
7. m : ℤ@i
8. 0 < m
9. ∀n:ℕ. lg-connected(g;f^n + m 0;f^n 0)@i
10. n : ℕ@i
⊢ lg-connected(g;f^n + m + 1 0;f^n + m 0)
2
1. [T] : Type
2. g : LabeledGraph(T)@i
3. 0 < lg-size(g)
4. ∀i:ℕlg-size(g). ∃j:ℕlg-size(g). lg-edge(g;j;i)
5. f : i:ℕlg-size(g) ⟶ ℕlg-size(g)
6. ∀i:ℕlg-size(g). lg-edge(g;f i;i)
7. m : ℤ@i
8. 0 < m
9. ∀n:ℕ. lg-connected(g;f^n + m 0;f^n 0)@i
10. n : ℕ@i
⊢ lg-connected(g;f^n + m 0;f^n 0)
Latex:
Latex:
1. [T] : Type
2. g : LabeledGraph(T)@i
3. 0 < lg-size(g)
4. \mforall{}i:\mBbbN{}lg-size(g). \mexists{}j:\mBbbN{}lg-size(g). lg-edge(g;j;i)
5. f : i:\mBbbN{}lg-size(g) {}\mrightarrow{} \mBbbN{}lg-size(g)
6. \mforall{}i:\mBbbN{}lg-size(g). lg-edge(g;f i;i)
7. m : \mBbbZ{}@i
8. 0 < m
9. \mforall{}n:\mBbbN{}. lg-connected(g;f\^{}n + m 0;f\^{}n 0)@i
10. n : \mBbbN{}@i
\mvdash{} lg-connected(g;f\^{}n + m + 1 0;f\^{}n 0)
By
Latex:
(Using [`b',\mkleeneopen{}f\^{}n + m 0\mkleeneclose{}] (BLemma `lg-connected\_transitivity`)\mcdot{} THENA (Auto THEN Auto'))
Home
Index