Nuprl Lemma : lg-acyclic-well-founded
∀[T:Type]. ∀g:LabeledGraph(T). (lg-acyclic(g) ⇐⇒ SWellFounded(lg-edge(g;a;b)))
Proof
Definitions occuring in Statement : 
lg-acyclic: lg-acyclic(g), 
lg-edge: lg-edge(g;a;b), 
lg-size: lg-size(g), 
labeled-graph: LabeledGraph(T), 
strongwellfounded: SWellFounded(R[x; y]), 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
nat: ℕ, 
guard: {T}, 
prop: ℙ, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_apply: x[s], 
decidable: Dec(P), 
or: P ∨ Q, 
uiff: uiff(P;Q), 
le: A ≤ B, 
less_than': less_than'(a;b), 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
strongwellfounded: SWellFounded(R[x; y]), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
subtract: n - m, 
lg-acyclic: lg-acyclic(g), 
lg-connected: lg-connected(g;a;b), 
infix_ap: x f y
Latex:
\mforall{}[T:Type].  \mforall{}g:LabeledGraph(T).  (lg-acyclic(g)  \mLeftarrow{}{}\mRightarrow{}  SWellFounded(lg-edge(g;a;b)))
Date html generated:
2016_05_17-AM-10_11_13
Last ObjectModification:
2016_01_18-AM-00_24_26
Theory : process-model
Home
Index