Step
*
of Lemma
lg-contains_transitivity
∀[T:Type]. ∀g1,g2,g3:LabeledGraph(T). (g1 ⊆ g2
⇒ g2 ⊆ g3
⇒ g1 ⊆ g3)
BY
{ (Unfold `lg-contains` 0
THEN Auto
THEN ExRepD
THEN (HypSubst' (-1) 0 THEN Auto THEN Thin (-1))
THEN HypSubst' (-3) 0
THEN Auto
THEN Thin (-3)) }
1
1. [T] : Type
2. g1 : LabeledGraph(T)@i
3. g2 : LabeledGraph(T)@i
4. g3 : LabeledGraph(T)@i
5. g4 : LabeledGraph(T)@i
6. g5 : LabeledGraph(T)@i
7. ga : LabeledGraph(T)@i
8. gb : LabeledGraph(T)@i
⊢ ∃ga@0,gb@0:LabeledGraph(T)
(lg-append(ga;lg-append(lg-append(g4;lg-append(g1;g5));gb)) = lg-append(ga@0;lg-append(g1;gb@0)) ∈ LabeledGraph(T))
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}g1,g2,g3:LabeledGraph(T). (g1 \msubseteq{} g2 {}\mRightarrow{} g2 \msubseteq{} g3 {}\mRightarrow{} g1 \msubseteq{} g3)
By
Latex:
(Unfold `lg-contains` 0
THEN Auto
THEN ExRepD
THEN (HypSubst' (-1) 0 THEN Auto THEN Thin (-1))
THEN HypSubst' (-3) 0
THEN Auto
THEN Thin (-3))
Home
Index