Nuprl Lemma : lg-edge-lg-connected
∀[T:Type]. ∀g:LabeledGraph(T). ∀a,b:ℕlg-size(g).  (lg-edge(g;a;b) ⇒ lg-connected(g;a;b))
Proof
Definitions occuring in Statement : 
lg-connected: lg-connected(g;a;b), 
lg-edge: lg-edge(g;a;b), 
lg-size: lg-size(g), 
labeled-graph: LabeledGraph(T), 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
lg-connected: lg-connected(g;a;b), 
member: t ∈ T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
and: P ∧ Q, 
cand: A c∧ B, 
uimplies: b supposing a, 
infix_ap: x f y, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x]
Latex:
\mforall{}[T:Type].  \mforall{}g:LabeledGraph(T).  \mforall{}a,b:\mBbbN{}lg-size(g).    (lg-edge(g;a;b)  {}\mRightarrow{}  lg-connected(g;a;b))
 Date html generated: 
2016_05_17-AM-10_10_05
 Last ObjectModification: 
2015_12_29-PM-05_32_43
Theory : process-model
Home
Index