Nuprl Lemma : lg-edge-map
∀[T,S:Type]. ∀f:T ⟶ S. ∀g:LabeledGraph(T). ∀a,b:ℕlg-size(g). (lg-edge(lg-map(f;g);a;b)
⇐⇒ lg-edge(g;a;b))
Proof
Definitions occuring in Statement :
lg-map: lg-map(f;g)
,
lg-edge: lg-edge(g;a;b)
,
lg-size: lg-size(g)
,
labeled-graph: LabeledGraph(T)
,
int_seg: {i..j-}
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
lg-edge: lg-edge(g;a;b)
,
lg-map: lg-map(f;g)
,
lg-size: lg-size(g)
,
lg-in-edges: lg-in-edges(g;x)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
top: Top
,
subtype_rel: A ⊆r B
,
labeled-graph: LabeledGraph(T)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
guard: {T}
,
nat: ℕ
,
int_seg: {i..j-}
,
uimplies: b supposing a
,
prop: ℙ
,
ge: i ≥ j
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
spreadn: spread3,
pi2: snd(t)
,
pi1: fst(t)
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Latex:
\mforall{}[T,S:Type].
\mforall{}f:T {}\mrightarrow{} S. \mforall{}g:LabeledGraph(T). \mforall{}a,b:\mBbbN{}lg-size(g). (lg-edge(lg-map(f;g);a;b) \mLeftarrow{}{}\mRightarrow{} lg-edge(g;a;b))
Date html generated:
2016_05_17-AM-10_12_22
Last ObjectModification:
2016_01_18-AM-00_22_02
Theory : process-model
Home
Index