Nuprl Lemma : lg-search-property
∀[T:Type]. ∀G:LabeledGraph(T). ∀P:T ⟶ 𝔹.  (↑isl(lg-search(G;x.P[x])) ⇐⇒ lg-exists(G;x.↑P[x]))
Proof
Definitions occuring in Statement : 
lg-search: lg-search(G;x.P[x]), 
lg-exists: lg-exists(G;x.P[x]), 
labeled-graph: LabeledGraph(T), 
assert: ↑b, 
isl: isl(x), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
lg-exists: lg-exists(G;x.P[x]), 
lg-search: lg-search(G;x.P[x]), 
let: let, 
lg-label2: lg-label2(g;x), 
member: t ∈ T, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
int_seg: {i..j-}, 
implies: P ⇒ Q, 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
isl: isl(x), 
assert: ↑b, 
bfalse: ff, 
false: False, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
so_lambda: λ2x.t[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
nequal: a ≠ b ∈ T , 
decidable: Dec(P), 
lelt: i ≤ j < k, 
true: True
Latex:
\mforall{}[T:Type].  \mforall{}G:LabeledGraph(T).  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.    (\muparrow{}isl(lg-search(G;x.P[x]))  \mLeftarrow{}{}\mRightarrow{}  lg-exists(G;x.\muparrow{}P[x]))
Date html generated:
2016_05_17-AM-10_18_42
Last ObjectModification:
2016_01_18-AM-00_20_58
Theory : process-model
Home
Index