Nuprl Lemma : lg-size-deliver-msg
∀[M:Type ⟶ Type]
  ∀[t:ℕ]. ∀[x:Id]. ∀[m:pMsg(P.M[P])]. ∀[Cs:component(P.M[P]) List]. ∀[G:LabeledDAG(pInTransit(P.M[P]))].
    (lg-size(G) ≤ lg-size(snd(deliver-msg(t;m;x;Cs;G)))) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
deliver-msg: deliver-msg(t;m;x;Cs;L), 
pInTransit: pInTransit(P.M[P]), 
component: component(P.M[P]), 
pMsg: pMsg(P.M[P]), 
ldag: LabeledDAG(T), 
lg-size: lg-size(g), 
Id: Id, 
list: T List, 
strong-type-continuous: Continuous+(T.F[T]), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
pi2: snd(t), 
le: A ≤ B, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ldag: LabeledDAG(T), 
subtype_rel: A ⊆r B, 
nat: ℕ, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
prop: ℙ, 
System: System(P.M[P]), 
all: ∀x:A. B[x], 
deliver-msg: deliver-msg(t;m;x;Cs;L)
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[t:\mBbbN{}].  \mforall{}[x:Id].  \mforall{}[m:pMsg(P.M[P])].  \mforall{}[Cs:component(P.M[P])  List].
    \mforall{}[G:LabeledDAG(pInTransit(P.M[P]))].
        (lg-size(G)  \mleq{}  lg-size(snd(deliver-msg(t;m;x;Cs;G)))) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-10_38_53
Last ObjectModification:
2016_01_18-AM-00_15_21
Theory : process-model
Home
Index