Nuprl Lemma : lifting1-loc-lifting-like
∀[A,B:Type]. ∀[f:Id ⟶ A ⟶ B]. ∀[i:Id].  lifting-like(A;λa.lifting1-loc(f;i;a))
Proof
Definitions occuring in Statement : 
lifting-like: lifting-like(A;f), 
lifting1-loc: lifting1-loc(f;loc;b), 
Id: Id, 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
lifting1-loc: lifting1-loc(f;loc;b), 
lifting-like: lifting-like(A;f), 
bag-null: bag-null(bs), 
null: null(as), 
lifting-loc-gen-rev: lifting-loc-gen-rev(n;bags;loc;f), 
lifting-gen-rev: lifting-gen-rev(n;f;bags), 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags), 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
bfalse: ff, 
bag-combine: ⋃x∈bs.f[x], 
bag-union: bag-union(bbs), 
concat: concat(ll), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
bag-map: bag-map(f;bs), 
map: map(f;as), 
single-bag: {x}, 
cons: [a / b], 
append: as @ bs, 
btrue: tt, 
empty-bag: {}, 
nil: [], 
it: ⋅, 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
false: False, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
true: True, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
guard: {T}
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B].  \mforall{}[i:Id].    lifting-like(A;\mlambda{}a.lifting1-loc(f;i;a))
Date html generated:
2016_05_17-AM-11_12_01
Last ObjectModification:
2015_12_29-PM-05_14_10
Theory : process-model
Home
Index