Nuprl Lemma : member-disjoint-union-comb
∀[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E].  uiff(↑e ∈b X (+) Y;↑(e ∈b X ∨be ∈b Y))
Proof
Definitions occuring in Statement : 
disjoint-union-comb: X (+) Y, 
member-eclass: e ∈b X, 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
bor: p ∨bq, 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
member-eclass: e ∈b X, 
disjoint-union-comb: X (+) Y, 
parallel-class: X || Y, 
eclass-compose2: eclass-compose2(f;X;Y), 
lifting-1: lifting-1(f), 
lifting1: lifting1(f;b), 
lifting-gen-rev: lifting-gen-rev(n;f;bags), 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags), 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
simple-comb-1: F|X|, 
simple-comb: simple-comb(F;Xs), 
select: L[n], 
cons: [a / b], 
top: Top, 
member: t ∈ T, 
class-ap: X(e), 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
guard: {T}, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
ge: i ≥ j 
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    uiff(\muparrow{}e  \mmember{}\msubb{}  X  (+)  Y;\muparrow{}(e  \mmember{}\msubb{}  X  \mvee{}\msubb{}e  \mmember{}\msubb{}  Y))
Date html generated:
2016_05_17-AM-11_12_42
Last ObjectModification:
2016_01_18-AM-00_10_22
Theory : process-model
Home
Index