Nuprl Lemma : member-eclass-eclass0
∀[Info,B,C:Type]. ∀[X:EClass(B)]. ∀[f:Id ⟶ B ⟶ bag(C)]. ∀[es:EO+(Info)]. ∀[e:E].
  uiff(↑e ∈b (f o X);(↑e ∈b X) ∧ (¬↑bag-null(f loc(e) X@e))) supposing single-valued-classrel(es;X;B)
Proof
Definitions occuring in Statement : 
eclass0: (f o X), 
classfun-res: X@e, 
single-valued-classrel: single-valued-classrel(es;X;T), 
member-eclass: e ∈b X, 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-loc: loc(e), 
es-E: E, 
Id: Id, 
assert: ↑b, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
bag-null: bag-null(bs), 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
squash: ↓T, 
exists: ∃x:A. B[x], 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
prop: ℙ, 
not: ¬A, 
false: False, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
rev_uimplies: rev_uimplies(P;Q), 
cand: A c∧ B
Latex:
\mforall{}[Info,B,C:Type].  \mforall{}[X:EClass(B)].  \mforall{}[f:Id  {}\mrightarrow{}  B  {}\mrightarrow{}  bag(C)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    uiff(\muparrow{}e  \mmember{}\msubb{}  (f  o  X);(\muparrow{}e  \mmember{}\msubb{}  X)  \mwedge{}  (\mneg{}\muparrow{}bag-null(f  loc(e)  X@e))) 
    supposing  single-valued-classrel(es;X;B)
Date html generated:
2016_05_17-AM-11_14_49
Last ObjectModification:
2016_01_18-AM-00_09_44
Theory : process-model
Home
Index