Nuprl Lemma : member-eclass-simple-comb-2-iff
∀[Info,A,B,C:Type]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[F:bag(A) ⟶ bag(B) ⟶ bag(C)]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].
  (uiff(↑e ∈b F|X, Y|;(↑e ∈b X) ∧ (↑e ∈b Y) ∧ (¬↑bag-null(F {X@e} {Y@e})))) supposing 
     (single-valued-classrel(es;Y;B) and 
     single-valued-classrel(es;X;A) and 
     lifting2-like(A;B;F))
Proof
Definitions occuring in Statement : 
lifting2-like: lifting2-like(A;B;f), 
simple-comb-2: F|X, Y|, 
classfun-res: X@e, 
single-valued-classrel: single-valued-classrel(es;X;T), 
member-eclass: e ∈b X, 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
assert: ↑b, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
bag-null: bag-null(bs), 
single-bag: {x}, 
bag: bag(T)
Definitions unfolded in proof : 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
prop: ℙ, 
all: ∀x:A. B[x], 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
lifting2-like: lifting2-like(A;B;f), 
simple-comb-2: F|X, Y|, 
member-eclass: e ∈b X, 
simple-comb: simple-comb(F;Xs), 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
eclass: EClass(A[eo; e]), 
nat: ℕ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
single-valued-classrel: single-valued-classrel(es;X;T), 
classrel: v ∈ X(e), 
single-valued-bag: single-valued-bag(b;T), 
guard: {T}, 
rev_uimplies: rev_uimplies(P;Q), 
nequal: a ≠ b ∈ T 
Latex:
\mforall{}[Info,A,B,C:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[F:bag(A)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(C)].  \mforall{}[X:EClass(A)].
\mforall{}[Y:EClass(B)].
    (uiff(\muparrow{}e  \mmember{}\msubb{}  F|X,  Y|;(\muparrow{}e  \mmember{}\msubb{}  X)  \mwedge{}  (\muparrow{}e  \mmember{}\msubb{}  Y)  \mwedge{}  (\mneg{}\muparrow{}bag-null(F  \{X@e\}  \{Y@e\}))))  supposing 
          (single-valued-classrel(es;Y;B)  and 
          single-valued-classrel(es;X;A)  and 
          lifting2-like(A;B;F))
Date html generated:
2016_05_17-AM-11_13_30
Last ObjectModification:
2016_01_18-AM-00_10_56
Theory : process-model
Home
Index