Nuprl Lemma : member-loop-class-memory
∀[Info,B:Type]. ∀[X:EClass(B ⟶ B)]. ∀[init:Id ⟶ bag(B)]. ∀[es:EO+(Info)]. ∀[e:E].
  (e ∈b loop-class-memory(X;init) ~ 0 <z #(init loc(e)))
Proof
Definitions occuring in Statement : 
loop-class-memory: loop-class-memory(X;init), 
member-eclass: e ∈b X, 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-loc: loc(e), 
es-E: E, 
Id: Id, 
lt_int: i <z j, 
uall: ∀[x:A]. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type, 
sqequal: s ~ t, 
bag-size: #(bs), 
bag: bag(T)
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
or: P ∨ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
false: False, 
not: ¬A, 
rev_uimplies: rev_uimplies(P;Q), 
prop: ℙ, 
rev_implies: P ⇐ Q, 
true: True, 
sq_type: SQType(T), 
guard: {T}, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,B:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  B)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    (e  \mmember{}\msubb{}  loop-class-memory(X;init)  \msim{}  0  <z  \#(init  loc(e)))
Date html generated:
2016_05_17-AM-11_15_29
Last ObjectModification:
2015_12_29-PM-05_13_42
Theory : process-model
Home
Index