Nuprl Lemma : member-prior-run-events
∀[M:Type ⟶ Type]. ∀r:pRunType(P.M[P]). ∀t:ℕ. ∀e:runEvents(r).  ((e ∈ prior-run-events(r;t)) ⇐⇒ run-event-step(e) < t)
Proof
Definitions occuring in Statement : 
prior-run-events: prior-run-events(r;t), 
run-event-step: run-event-step(e), 
runEvents: runEvents(r), 
pRunType: pRunType(T.M[T]), 
l_member: (x ∈ l), 
nat: ℕ, 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
prior-run-events: prior-run-events(r;t), 
run-event-step: run-event-step(e), 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
pRunType: pRunType(T.M[T]), 
uimplies: b supposing a, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
top: Top, 
cand: A c∧ B, 
runEvents: runEvents(r), 
pi1: fst(t), 
pi2: snd(t), 
outl: outl(x), 
isl: isl(x), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
is-run-event: is-run-event(r;t;x), 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
assert: ↑b, 
spreadn: spread3, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
bfalse: ff, 
exists: ∃x:A. B[x], 
squash: ↓T, 
guard: {T}, 
int_seg: {i..j-}, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
sq_stable: SqStable(P), 
true: True
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}r:pRunType(P.M[P]).  \mforall{}t:\mBbbN{}.  \mforall{}e:runEvents(r).
        ((e  \mmember{}  prior-run-events(r;t))  \mLeftarrow{}{}\mRightarrow{}  run-event-step(e)  <  t)
Date html generated:
2016_05_17-AM-10_47_44
Last ObjectModification:
2016_01_18-AM-00_16_04
Theory : process-model
Home
Index