Nuprl Lemma : norm-components_wf
∀[M:Type ⟶ Type]. norm-components ∈ id-fun(component(P.M[P]) List) supposing M[Top]
Proof
Definitions occuring in Statement : 
norm-components: norm-components, 
component: component(P.M[P]), 
list: T List, 
id-fun: id-fun(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
norm-components: norm-components, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  norm-components  \mmember{}  id-fun(component(P.M[P])  List)  supposing  M[Top]
Date html generated:
2016_05_17-AM-10_25_06
Last ObjectModification:
2015_12_29-PM-05_26_38
Theory : process-model
Home
Index