Nuprl Lemma : norm-lg_wf
∀[T:Type]. ∀[N:id-fun(T)]. (norm-lg(N) ∈ id-fun(LabeledGraph(T))) supposing value-type(T)
Proof
Definitions occuring in Statement : 
norm-lg: norm-lg(N), 
labeled-graph: LabeledGraph(T), 
id-fun: id-fun(T), 
value-type: value-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
norm-lg: norm-lg(N), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
id-fun: id-fun(T), 
subtype_rel: A ⊆r B, 
prop: ℙ, 
implies: P ⇒ Q, 
labeled-graph: LabeledGraph(T), 
lg-size: lg-size(g), 
nat: ℕ, 
int_seg: {i..j-}, 
top: Top, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
and: P ∧ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
squash: ↓T, 
true: True, 
sq_type: SQType(T), 
guard: {T}, 
spreadn: spread3, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
l_member: (x ∈ l), 
pi1: fst(t), 
pi2: snd(t), 
lelt: i ≤ j < k
Latex:
\mforall{}[T:Type].  \mforall{}[N:id-fun(T)].  (norm-lg(N)  \mmember{}  id-fun(LabeledGraph(T)))  supposing  value-type(T)
Date html generated:
2016_05_17-AM-10_19_09
Last ObjectModification:
2016_01_18-AM-00_23_37
Theory : process-model
Home
Index