Nuprl Lemma : null-bag-empty
∀T:Type. ∀x:bag(T).  (↑bag-null(x) ⇐⇒ x = {} ∈ bag(T))
Proof
Definitions occuring in Statement : 
assert: ↑b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type, 
equal: s = t ∈ T, 
bag-null: bag-null(bs), 
empty-bag: {}, 
bag: bag(T)
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
bag-null: bag-null(bs), 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B
Latex:
\mforall{}T:Type.  \mforall{}x:bag(T).    (\muparrow{}bag-null(x)  \mLeftarrow{}{}\mRightarrow{}  x  =  \{\})
Date html generated:
2016_05_17-AM-11_09_48
Last ObjectModification:
2015_12_29-PM-05_16_03
Theory : process-model
Home
Index