Nuprl Lemma : pRun-intransit-invariant
∀[M:Type ⟶ Type]
∀n2m:ℕ ⟶ pMsg(P.M[P]). ∀l2m:Id ⟶ pMsg(P.M[P]). ∀Cs0:component(P.M[P]) List. ∀G0:LabeledDAG(pInTransit(P.M[P])).
∀env:pEnvType(P.M[P]). ∀t:ℕ.
let r = pRun(<Cs0, G0>;env;n2m;l2m) in
let info,Cs,G = r t in
∀x∈G.let ev = fst(x) in
((fst(ev)) ≤ t) ∨ (∃m:ℕlg-size(G0). (ev = (fst(lg-label(G0;m))) ∈ (ℤ × Id)))
supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement :
pRun: pRun(S0;env;nat2msg;loc2msg)
,
pEnvType: pEnvType(T.M[T])
,
pInTransit: pInTransit(P.M[P])
,
component: component(P.M[P])
,
pMsg: pMsg(P.M[P])
,
lg-all: ∀x∈G.P[x]
,
ldag: LabeledDAG(T)
,
lg-label: lg-label(g;x)
,
lg-size: lg-size(g)
,
Id: Id
,
list: T List
,
strong-type-continuous: Continuous+(T.F[T])
,
int_seg: {i..j-}
,
nat: ℕ
,
let: let,
spreadn: spread3,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
pi1: fst(t)
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
pair: <a, b>
,
product: x:A × B[x]
,
natural_number: $n
,
int: ℤ
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
let: let,
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
strong-type-continuous: Continuous+(T.F[T])
,
ext-eq: A ≡ B
,
and: P ∧ Q
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
pInTransit: pInTransit(P.M[P])
,
pi1: fst(t)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
ldag: LabeledDAG(T)
,
nat: ℕ
,
implies: P
⇒ Q
,
so_lambda: λ2x y.t[x; y]
,
System: System(P.M[P])
,
so_apply: x[s1;s2]
,
prop: ℙ
,
guard: {T}
,
lg-all: ∀x∈G.P[x]
,
or: P ∨ Q
,
exists: ∃x:A. B[x]
,
pEnvType: pEnvType(T.M[T])
,
nat_plus: ℕ+
,
le: A ≤ B
,
decidable: Dec(P)
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
false: False
,
uiff: uiff(P;Q)
,
subtract: n - m
,
top: Top
,
less_than': less_than'(a;b)
,
true: True
,
pRunType: pRunType(T.M[T])
,
spreadn: spread3,
do-chosen-command: do-chosen-command(nat2msg;loc2msg;t;S;n;m;nm)
,
exposed-bfalse: exposed-bfalse
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
pi2: snd(t)
,
lg-is-source: lg-is-source(g;i)
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
list_accum: list_accum,
nil: []
,
deliver-msg-to-comp: deliver-msg-to-comp(t;m;x;S;C)
,
component: component(P.M[P])
,
cand: A c∧ B
,
pExt: pExt(P.M[P])
,
add-cause: add-cause(ev;ext)
,
deliver-msg: deliver-msg(t;m;x;Cs;L)
,
create-component: create-component(t;P;x;Cs;L)
,
nequal: a ≠ b ∈ T
,
fulpRunType: fulpRunType(T.M[T])
Latex:
\mforall{}[M:Type {}\mrightarrow{} Type]
\mforall{}n2m:\mBbbN{} {}\mrightarrow{} pMsg(P.M[P]). \mforall{}l2m:Id {}\mrightarrow{} pMsg(P.M[P]). \mforall{}Cs0:component(P.M[P]) List.
\mforall{}G0:LabeledDAG(pInTransit(P.M[P])). \mforall{}env:pEnvType(P.M[P]). \mforall{}t:\mBbbN{}.
let r = pRun(<Cs0, G0>env;n2m;l2m) in
let info,Cs,G = r t in
\mforall{}x\mmember{}G.let ev = fst(x) in
((fst(ev)) \mleq{} t) \mvee{} (\mexists{}m:\mBbbN{}lg-size(G0). (ev = (fst(lg-label(G0;m)))))
supposing Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-10_48_14
Last ObjectModification:
2016_01_18-AM-00_18_02
Theory : process-model
Home
Index