Nuprl Lemma : pRun-invariant1
∀[M:Type ⟶ Type]
  ∀n2m:ℕ ⟶ pMsg(P.M[P]). ∀l2m:Id ⟶ pMsg(P.M[P]). ∀S0:System(P.M[P]). ∀env:pEnvType(P.M[P]).
    let r = pRun(S0;env;n2m;l2m) in
        ∀e:runEvents(r)
          (fst(fst(run-info(r;e))) < run-event-step(e)
          ∨ (∃m:ℕlg-size(snd(S0)). ((fst(run-info(r;e))) = (fst(lg-label(snd(S0);m))) ∈ (ℤ × Id)))) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
run-event-step: run-event-step(e), 
runEvents: runEvents(r), 
run-info: run-info(r;e), 
pRun: pRun(S0;env;nat2msg;loc2msg), 
pEnvType: pEnvType(T.M[T]), 
System: System(P.M[P]), 
pMsg: pMsg(P.M[P]), 
lg-label: lg-label(g;x), 
lg-size: lg-size(g), 
Id: Id, 
strong-type-continuous: Continuous+(T.F[T]), 
int_seg: {i..j-}, 
nat: ℕ, 
less_than: a < b, 
let: let, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
strong-type-continuous: Continuous+(T.F[T]), 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
System: System(P.M[P]), 
let: let, 
pi2: snd(t), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
runEvents: runEvents(r), 
top: Top, 
decidable: Dec(P), 
or: P ∨ Q, 
pi1: fst(t), 
run-event-step: run-event-step(e), 
not: ¬A, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
false: False, 
prop: ℙ, 
run-info: run-info(r;e), 
pRun: pRun(S0;env;nat2msg;loc2msg), 
ycomb: Y, 
do-chosen-command: do-chosen-command(nat2msg;loc2msg;t;S;n;m;nm), 
is-run-event: is-run-event(r;t;x), 
nat: ℕ, 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
isl: isl(x), 
outl: outl(x), 
bfalse: ff, 
band: p ∧b q, 
assert: ↑b, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
le: A ≤ B, 
less_than': less_than'(a;b), 
ge: i ≥ j , 
int_upper: {i...}, 
spreadn: spread3, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
ldag: LabeledDAG(T), 
lg-is-source: lg-is-source(g;i), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
pInTransit: pInTransit(P.M[P]), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
fulpRunType: fulpRunType(T.M[T]), 
lg-all: ∀x∈G.P[x], 
Id: Id, 
true: True
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}l2m:Id  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}S0:System(P.M[P]).  \mforall{}env:pEnvType(P.M[P]).
        let  r  =  pRun(S0;env;n2m;l2m)  in
                \mforall{}e:runEvents(r)
                    (fst(fst(run-info(r;e)))  <  run-event-step(e)
                    \mvee{}  (\mexists{}m:\mBbbN{}lg-size(snd(S0)).  ((fst(run-info(r;e)))  =  (fst(lg-label(snd(S0);m)))))) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-10_48_25
Last ObjectModification:
2016_01_18-AM-00_24_32
Theory : process-model
Home
Index