Nuprl Lemma : pRun-invariant2
∀[M:Type ⟶ Type]
  ∀n2m:ℕ ⟶ pMsg(P.M[P]). ∀l2m:Id ⟶ pMsg(P.M[P]). ∀S0:System(P.M[P]). ∀env:pEnvType(P.M[P]).
    let r = pRun(S0;env;n2m;l2m) in
        ∀e1,e2:runEvents(r).
          (∀P:Process(P.M[P])
             ((P ∈ run-prior-state(S0;r;e1))
             ⇒ (iterate-Process(P;map(λe.run-event-msg(r;e);run-event-interval(r;e1;e2)))
                  ∈ run-event-state(r;e2)))) supposing 
             ((run-event-step(e1) ≤ run-event-step(e2)) and 
             (run-event-loc(e1) = run-event-loc(e2) ∈ Id)) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
run-prior-state: run-prior-state(S0;r;e), 
run-event-interval: run-event-interval(r;e1;e2), 
run-event-step: run-event-step(e), 
run-event-loc: run-event-loc(e), 
run-event-state: run-event-state(r;e), 
run-event-msg: run-event-msg(r;e), 
runEvents: runEvents(r), 
pRun: pRun(S0;env;nat2msg;loc2msg), 
pEnvType: pEnvType(T.M[T]), 
System: System(P.M[P]), 
iterate-Process: iterate-Process(P;msgs), 
pMsg: pMsg(P.M[P]), 
Process: Process(P.M[P]), 
Id: Id, 
l_member: (x ∈ l), 
map: map(f;as), 
strong-type-continuous: Continuous+(T.F[T]), 
nat: ℕ, 
let: let, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
strong-type-continuous: Continuous+(T.F[T]), 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
let: let, 
prop: ℙ, 
top: Top, 
runEvents: runEvents(r), 
nat: ℕ, 
guard: {T}, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
l_contains: A ⊆ B, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
Id: Id, 
sq_type: SQType(T), 
iterate-Process: iterate-Process(P;msgs), 
dataflow-ap: df(a), 
Process-apply: Process-apply(P;m), 
cand: A c∧ B, 
squash: ↓T, 
true: True, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
less_than: a < b, 
le: A ≤ B, 
less_than': less_than'(a;b)
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}l2m:Id  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}S0:System(P.M[P]).  \mforall{}env:pEnvType(P.M[P]).
        let  r  =  pRun(S0;env;n2m;l2m)  in
                \mforall{}e1,e2:runEvents(r).
                    (\mforall{}P:Process(P.M[P])
                          ((P  \mmember{}  run-prior-state(S0;r;e1))
                          {}\mRightarrow{}  (iterate-Process(P;map(\mlambda{}e.run-event-msg(r;e);run-event-interval(r;e1;e2)))
                                    \mmember{}  run-event-state(r;e2))))  supposing 
                          ((run-event-step(e1)  \mleq{}  run-event-step(e2))  and 
                          (run-event-loc(e1)  =  run-event-loc(e2))) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-10_48_36
Last ObjectModification:
2016_01_18-AM-00_13_58
Theory : process-model
Home
Index