Nuprl Lemma : permutation-sv-list
∀[A:Type]. ∀[L1,L2:A List].  (single-valued-list(L1;A) ⇒ permutation(A;L1;L2) ⇒ (L1 = L2 ∈ (A List)))
Proof
Definitions occuring in Statement : 
single-valued-list: single-valued-list(L;T), 
permutation: permutation(T;L1;L2), 
list: T List, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
nat: ℕ, 
permutation: permutation(T;L1;L2), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
top: Top, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
cand: A c∧ B, 
single-valued-list: single-valued-list(L;T), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Latex:
\mforall{}[A:Type].  \mforall{}[L1,L2:A  List].    (single-valued-list(L1;A)  {}\mRightarrow{}  permutation(A;L1;L2)  {}\mRightarrow{}  (L1  =  L2))
Date html generated:
2016_05_17-AM-11_10_21
Last ObjectModification:
2016_01_18-AM-00_10_34
Theory : process-model
Home
Index