Nuprl Lemma : rec-dataflow_wf
∀[S,A,B:Type]. ∀[s0:S]. ∀[next:S ⟶ A ⟶ (S × B)]. (rec-dataflow(s0;s,m.next[s;m]) ∈ dataflow(A;B))
Proof
Definitions occuring in Statement :
rec-dataflow: rec-dataflow(s0;s,m.next[s; m])
,
dataflow: dataflow(A;B)
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s1;s2]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
universe: Type
Definitions unfolded in proof :
dataflow: dataflow(A;B)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
rec-dataflow: rec-dataflow(s0;s,m.next[s; m])
,
corec: corec(T.F[T])
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
decidable: Dec(P)
,
or: P ∨ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
so_apply: x[s1;s2]
Latex:
\mforall{}[S,A,B:Type]. \mforall{}[s0:S]. \mforall{}[next:S {}\mrightarrow{} A {}\mrightarrow{} (S \mtimes{} B)]. (rec-dataflow(s0;s,m.next[s;m]) \mmember{} dataflow(A;B))
Date html generated:
2016_05_17-AM-10_19_52
Last ObjectModification:
2016_01_18-AM-00_20_52
Theory : process-model
Home
Index