Nuprl Lemma : rec-process_wf_Process
∀[S,M:Type ⟶ Type].
(∀[s0:S[Process(T.M[T])]]. ∀[next:⋂T:{T:Type| Process(T.M[T]) ⊆r T}
(S[M[T] ⟶ (T × LabeledDAG(Id × (Com(T.M[T]) T)))]
⟶ M[T]
⟶ (S[T] × LabeledDAG(Id × (Com(T.M[T]) T))))].
(RecProcess(s0;s,m.next[s;m]) ∈ Process(T.M[T]))) supposing
(Continuous+(T.M[T]) and
Continuous+(T.S[T]))
Proof
Definitions occuring in Statement :
Process: Process(P.M[P])
,
Com: Com(P.M[P])
,
ldag: LabeledDAG(T)
,
rec-process: RecProcess(s0;s,m.next[s; m])
,
Id: Id
,
strong-type-continuous: Continuous+(T.F[T])
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s1;s2]
,
so_apply: x[s]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
apply: f a
,
isect: ⋂x:A. B[x]
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
Process: Process(P.M[P])
,
prop: ℙ
,
Com: Com(P.M[P])
,
tagged+: T |+ z:B
Latex:
\mforall{}[S,M:Type {}\mrightarrow{} Type].
(\mforall{}[s0:S[Process(T.M[T])]]. \mforall{}[next:\mcap{}T:\{T:Type| Process(T.M[T]) \msubseteq{}r T\}
(S[M[T] {}\mrightarrow{} (T \mtimes{} LabeledDAG(Id \mtimes{} (Com(T.M[T]) T)))]
{}\mrightarrow{} M[T]
{}\mrightarrow{} (S[T] \mtimes{} LabeledDAG(Id \mtimes{} (Com(T.M[T]) T))))].
(RecProcess(s0;s,m.next[s;m]) \mmember{} Process(T.M[T]))) supposing
(Continuous+(T.M[T]) and
Continuous+(T.S[T]))
Date html generated:
2016_05_17-AM-10_23_30
Last ObjectModification:
2015_12_29-PM-05_27_25
Theory : process-model
Home
Index