Nuprl Lemma : reliable-env-property
∀[M:Type ⟶ Type]
  ∀S0:InitialSystem(P.M[P]). ∀n2m:ℕ ⟶ pMsg(P.M[P]). ∀l2m:Id ⟶ pMsg(P.M[P]). ∀env:pEnvType(P.M[P]).
    let r = pRun(S0;env;n2m;l2m) in
        reliable-env(env; r)
        ⇒ (∀tn:run-msg-commands(r)
              ∃e:runEvents(r)
               let t,n = tn 
               in (run-info(r;e)
                  = intransit-to-info(n2m;l2m;r;env;run-event-step(e);run-command(r;t;n))
                  ∈ (ℤ × Id × pMsg(P.M[P])))
                  ∧ (run-event-loc(e) = (fst(snd(run-command(r;t;n)))) ∈ Id)) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
intransit-to-info: intransit-to-info(n2m;l2m;r;env;t;lbl), 
run-msg-commands: run-msg-commands(r), 
run-command: run-command(r;t;n), 
reliable-env: reliable-env(env; r), 
InitialSystem: InitialSystem(P.M[P]), 
run-event-step: run-event-step(e), 
run-event-loc: run-event-loc(e), 
runEvents: runEvents(r), 
run-info: run-info(r;e), 
pRun: pRun(S0;env;nat2msg;loc2msg), 
pEnvType: pEnvType(T.M[T]), 
pMsg: pMsg(P.M[P]), 
Id: Id, 
strong-type-continuous: Continuous+(T.F[T]), 
nat: ℕ, 
let: let, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
spread: spread def, 
product: x:A × B[x], 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
strong-type-continuous: Continuous+(T.F[T]), 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
let: let, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
InitialSystem: InitialSystem(P.M[P]), 
implies: P ⇒ Q, 
run-msg-commands: run-msg-commands(r), 
cand: A c∧ B, 
run-command-node: run-command-node(r;t;n), 
prop: ℙ, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
pi1: fst(t), 
pi2: snd(t), 
sq_type: SQType(T), 
guard: {T}, 
int_seg: {i..j-}, 
exists: ∃x:A. B[x], 
pInTransit: pInTransit(P.M[P]), 
sq_stable: SqStable(P), 
squash: ↓T, 
ldag: LabeledDAG(T), 
pRunType: pRunType(T.M[T]), 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
run-command: run-command(r;t;n), 
pRun: pRun(S0;env;nat2msg;loc2msg), 
ycomb: Y, 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
run-intransit: run-intransit(r;t), 
run-system: run-system(r;t), 
fulpRunType: fulpRunType(T.M[T]), 
System: System(P.M[P]), 
pEnvType: pEnvType(T.M[T]), 
nat_plus: ℕ+, 
spreadn: spread3, 
lelt: i ≤ j < k, 
less_than: a < b, 
do-chosen-command: do-chosen-command(nat2msg;loc2msg;t;S;n;m;nm), 
lg-is-source: lg-is-source(g;i), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
true: True, 
create-component: create-component(t;P;x;Cs;L), 
int_upper: {i...}, 
runEvents: runEvents(r), 
is-run-event: is-run-event(r;t;x), 
isl: isl(x), 
outl: outl(x), 
band: p ∧b q, 
rev_uimplies: rev_uimplies(P;Q), 
eq_atom: x =a y, 
run-event-loc: run-event-loc(e), 
run-event-step: run-event-step(e), 
intransit-to-info: intransit-to-info(n2m;l2m;r;env;t;lbl), 
run-info: run-info(r;e), 
command-to-msg: command-to-msg(c;nmsg;lmsg)
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}S0:InitialSystem(P.M[P]).  \mforall{}n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}l2m:Id  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}env:pEnvType(P.M[P]).
        let  r  =  pRun(S0;env;n2m;l2m)  in
                reliable-env(env;  r)
                {}\mRightarrow{}  (\mforall{}tn:run-msg-commands(r)
                            \mexists{}e:runEvents(r)
                              let  t,n  =  tn 
                              in  (run-info(r;e)
                                    =  intransit-to-info(n2m;l2m;r;env;run-event-step(e);run-command(r;t;n)))
                                    \mwedge{}  (run-event-loc(e)  =  (fst(snd(run-command(r;t;n)))))) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-11_00_10
Last ObjectModification:
2016_01_18-AM-00_27_00
Theory : process-model
Home
Index