Nuprl Lemma : run-eo_wf
∀[M:Type ⟶ Type]. ∀[r:pRunType(P.M[P])].
  EO(r) ∈ EO+(pMsg(P.M[P])) supposing ∀e:runEvents(r). fst(fst(run-info(r;e))) < run-event-step(e)
Proof
Definitions occuring in Statement : 
run-eo: EO(r), 
run-event-step: run-event-step(e), 
runEvents: runEvents(r), 
run-info: run-info(r;e), 
pRunType: pRunType(T.M[T]), 
pMsg: pMsg(P.M[P]), 
event-ordering+: EO+(Info), 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
pi1: fst(t), 
all: ∀x:A. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
run-eo: EO(r), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
infix_ap: x f y, 
and: P ∧ Q, 
cand: A c∧ B, 
implies: P ⇒ Q, 
squash: ↓T, 
prop: ℙ, 
not: ¬A, 
false: False, 
iff: P ⇐⇒ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
rev_implies: P ⇐ Q, 
pi1: fst(t), 
nat: ℕ, 
run-event-loc: run-event-loc(e), 
run-event-step: run-event-step(e), 
le: A ≤ B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
run-lt: run-lt(r), 
run-pred: run-pred(r), 
or: P ∨ Q, 
guard: {T}, 
runEvents: runEvents(r), 
trans: Trans(T;x,y.E[x; y])
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].
    EO(r)  \mmember{}  EO+(pMsg(P.M[P]))  supposing  \mforall{}e:runEvents(r).  fst(fst(run-info(r;e)))  <  run-event-step(e)
Date html generated:
2016_05_17-AM-10_51_05
Last ObjectModification:
2016_01_18-AM-00_13_13
Theory : process-model
Home
Index