Nuprl Lemma : run-event-cases
∀[M:Type ⟶ Type]
  ∀S0:System(P.M[P]). ∀r:pRunType(P.M[P]). ∀e1,e2:runEvents(r).
    (((run-event-local-pred(r;e2) = run-event-local-pred(r;e1) ∈ (runEvents(r)?))
       ∧ (run-event-interval(r;e1;e2) = [e2] ∈ (runEvents(r) List)))
       ∨ (∃e:runEvents(r)
           (run-event-step(e) < run-event-step(e2)
           ∧ (run-event-step(e1) ≤ run-event-step(e))
           ∧ ((run-event-loc(e1) = run-event-loc(e) ∈ Id) ∧ (run-event-local-pred(r;e2) = (inl e) ∈ (runEvents(r)?)))
           ∧ (run-event-interval(r;e1;e2) = (run-event-interval(r;e1;e) @ [e2]) ∈ (runEvents(r) List))))) supposing 
       ((run-event-step(e1) ≤ run-event-step(e2)) and 
       (run-event-loc(e1) = run-event-loc(e2) ∈ Id))
Proof
Definitions occuring in Statement : 
run-event-local-pred: run-event-local-pred(r;e), 
run-event-interval: run-event-interval(r;e1;e2), 
run-event-step: run-event-step(e), 
run-event-loc: run-event-loc(e), 
runEvents: runEvents(r), 
pRunType: pRunType(T.M[T]), 
System: System(P.M[P]), 
Id: Id, 
append: as @ bs, 
cons: [a / b], 
nil: [], 
list: T List, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
le: A ≤ B, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
and: P ∧ Q, 
unit: Unit, 
function: x:A ⟶ B[x], 
inl: inl x, 
union: left + right, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
prop: ℙ, 
runEvents: runEvents(r), 
run-event-step: run-event-step(e), 
pi1: fst(t), 
run-event-loc: run-event-loc(e), 
pi2: snd(t), 
run-event-interval: run-event-interval(r;e1;e2), 
run-event-local-pred: run-event-local-pred(r;e), 
let: let, 
run-event-history: run-event-history(r;e), 
sq_stable: SqStable(P), 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
squash: ↓T, 
Id: Id, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
cand: A c∧ B, 
less_than': less_than'(a;b), 
is-run-event: is-run-event(r;t;x), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
from-upto: [n, m), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
has-value: (a)↓, 
bfalse: ff, 
bnot: ¬bb, 
mapfilter: mapfilter(f;P;L), 
exposed-bfalse: exposed-bfalse, 
band: p ∧b q, 
isl: isl(x), 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
cons: [a / b], 
last: last(L), 
subtract: n - m, 
select: L[n]
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}S0:System(P.M[P]).  \mforall{}r:pRunType(P.M[P]).  \mforall{}e1,e2:runEvents(r).
        (((run-event-local-pred(r;e2)  =  run-event-local-pred(r;e1))
              \mwedge{}  (run-event-interval(r;e1;e2)  =  [e2]))
              \mvee{}  (\mexists{}e:runEvents(r)
                      (run-event-step(e)  <  run-event-step(e2)
                      \mwedge{}  (run-event-step(e1)  \mleq{}  run-event-step(e))
                      \mwedge{}  ((run-event-loc(e1)  =  run-event-loc(e))  \mwedge{}  (run-event-local-pred(r;e2)  =  (inl  e)))
                      \mwedge{}  (run-event-interval(r;e1;e2)  =  (run-event-interval(r;e1;e)  @  [e2])))))  supposing 
              ((run-event-step(e1)  \mleq{}  run-event-step(e2))  and 
              (run-event-loc(e1)  =  run-event-loc(e2)))
Date html generated:
2016_05_17-AM-10_45_24
Last ObjectModification:
2016_01_18-AM-00_26_38
Theory : process-model
Home
Index