Nuprl Lemma : run-event-interval_wf
∀[M:Type ⟶ Type]. ∀[r:pRunType(P.M[P])]. ∀[e1,e2:runEvents(r)].  (run-event-interval(r;e1;e2) ∈ runEvents(r) List)
Proof
Definitions occuring in Statement : 
run-event-interval: run-event-interval(r;e1;e2), 
runEvents: runEvents(r), 
pRunType: pRunType(T.M[T]), 
list: T List, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
run-event-interval: run-event-interval(r;e1;e2), 
let: let, 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
all: ∀x:A. B[x], 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
guard: {T}, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
cand: A c∧ B, 
squash: ↓T, 
sq_stable: SqStable(P), 
pi1: fst(t), 
pi2: snd(t), 
is-run-event: is-run-event(r;t;x), 
runEvents: runEvents(r)
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].  \mforall{}[e1,e2:runEvents(r)].
    (run-event-interval(r;e1;e2)  \mmember{}  runEvents(r)  List)
Date html generated:
2016_05_17-AM-10_43_43
Last ObjectModification:
2016_01_18-AM-00_14_38
Theory : process-model
Home
Index