Nuprl Lemma : run-event-state-next2
∀[M:Type ⟶ Type]
  ∀n2m:ℕ ⟶ pMsg(P.M[P]). ∀l2m:Id ⟶ pMsg(P.M[P]). ∀S0:System(P.M[P]). ∀env:pEnvType(P.M[P]).
    let r = pRun(S0;env;n2m;l2m) in
        ∀e:runEvents(r)
          (run-event-state(r;e)
          = rev(map(λP.(fst(Process-apply(P;run-event-msg(r;e))));run-event-state-when(r;e)))
          ∈ (Process(P.M[P]) List)) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
run-event-state-when: run-event-state-when(r;e), 
run-event-state: run-event-state(r;e), 
run-event-msg: run-event-msg(r;e), 
runEvents: runEvents(r), 
pRun: pRun(S0;env;nat2msg;loc2msg), 
pEnvType: pEnvType(T.M[T]), 
System: System(P.M[P]), 
Process-apply: Process-apply(P;m), 
pMsg: pMsg(P.M[P]), 
Process: Process(P.M[P]), 
Id: Id, 
reverse: rev(as), 
map: map(f;as), 
list: T List, 
strong-type-continuous: Continuous+(T.F[T]), 
nat: ℕ, 
let: let, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
pi1: fst(t), 
all: ∀x:A. B[x], 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
strong-type-continuous: Continuous+(T.F[T]), 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
let: let, 
runEvents: runEvents(r), 
pi1: fst(t), 
pi2: snd(t), 
implies: P ⇒ Q, 
run-event-state: run-event-state(r;e), 
run-event-msg: run-event-msg(r;e), 
is-run-event: is-run-event(r;t;x), 
run-info: run-info(r;e), 
pRun: pRun(S0;env;nat2msg;loc2msg), 
ycomb: Y, 
nat: ℕ, 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
spreadn: spread3, 
isl: isl(x), 
outl: outl(x), 
bfalse: ff, 
band: p ∧b q, 
assert: ↑b, 
false: False, 
prop: ℙ, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
ge: i ≥ j , 
int_upper: {i...}, 
fulpRunType: fulpRunType(T.M[T]), 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
System: System(P.M[P]), 
run-event-state-when: run-event-state-when(r;e), 
Id: Id, 
do-chosen-command: do-chosen-command(nat2msg;loc2msg;t;S;n;m;nm), 
ldag: LabeledDAG(T), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
lg-is-source: lg-is-source(g;i), 
pInTransit: pInTransit(P.M[P]), 
true: True, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
component: component(P.M[P]), 
mapfilter: mapfilter(f;P;L), 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
deliver-msg: deliver-msg(t;m;x;Cs;L), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
deliver-msg-to-comp: deliver-msg-to-comp(t;m;x;S;C), 
compose: f o g
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}l2m:Id  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}S0:System(P.M[P]).  \mforall{}env:pEnvType(P.M[P]).
        let  r  =  pRun(S0;env;n2m;l2m)  in
                \mforall{}e:runEvents(r)
                    (run-event-state(r;e)
                    =  rev(map(\mlambda{}P.(fst(Process-apply(P;run-event-msg(r;e))));run-event-state-when(r;e)))) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-10_46_46
Last ObjectModification:
2016_01_18-AM-00_23_30
Theory : process-model
Home
Index