Nuprl Lemma : run-event-state-when_wf
∀[M:Type ⟶ Type]. ∀[r:fulpRunType(P.M[P])]. ∀[e:ℕ+ × Id].  (run-event-state-when(r;e) ∈ Process(P.M[P]) List)
Proof
Definitions occuring in Statement : 
run-event-state-when: run-event-state-when(r;e), 
fulpRunType: fulpRunType(T.M[T]), 
Process: Process(P.M[P]), 
Id: Id, 
list: T List, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
run-event-state-when: run-event-state-when(r;e), 
component: component(P.M[P]), 
pi1: fst(t), 
fulpRunType: fulpRunType(T.M[T]), 
nat: ℕ, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
spreadn: spread3, 
System: System(P.M[P]), 
pi2: snd(t)
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:fulpRunType(P.M[P])].  \mforall{}[e:\mBbbN{}\msupplus{}  \mtimes{}  Id].
    (run-event-state-when(r;e)  \mmember{}  Process(P.M[P])  List)
Date html generated:
2016_05_17-AM-10_42_36
Last ObjectModification:
2016_01_18-AM-00_14_21
Theory : process-model
Home
Index