Nuprl Lemma : run-event-step-positive
∀[M:Type ⟶ Type]
  ∀[S0:System(P.M[P])]. ∀[n2m:ℕ ⟶ pMsg(P.M[P])]. ∀[l2m:Id ⟶ pMsg(P.M[P])]. ∀[env:pEnvType(P.M[P])].
  ∀[e:runEvents(pRun(S0;env;n2m;l2m))].
    0 < run-event-step(e) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
run-event-step: run-event-step(e), 
runEvents: runEvents(r), 
pRun: pRun(S0;env;nat2msg;loc2msg), 
pEnvType: pEnvType(T.M[T]), 
System: System(P.M[P]), 
pMsg: pMsg(P.M[P]), 
Id: Id, 
strong-type-continuous: Continuous+(T.F[T]), 
nat: ℕ, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
runEvents: runEvents(r), 
run-event-step: run-event-step(e), 
pi1: fst(t), 
is-run-event: is-run-event(r;t;x), 
pi2: snd(t), 
pRun: pRun(S0;env;nat2msg;loc2msg), 
ycomb: Y, 
prop: ℙ, 
nat: ℕ, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
sq_type: SQType(T), 
guard: {T}, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bfalse: ff, 
isl: isl(x), 
outl: outl(x), 
band: p ∧b q, 
assert: ↑b
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[S0:System(P.M[P])].  \mforall{}[n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P])].  \mforall{}[l2m:Id  {}\mrightarrow{}  pMsg(P.M[P])].
    \mforall{}[env:pEnvType(P.M[P])].  \mforall{}[e:runEvents(pRun(S0;env;n2m;l2m))].
        0  <  run-event-step(e) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-10_43_34
Last ObjectModification:
2016_01_18-AM-00_14_10
Theory : process-model
Home
Index