Nuprl Lemma : run-lt-step-less
∀[M:Type ⟶ Type]. ∀[r:pRunType(P.M[P])].
  ∀[x,y:runEvents(r)].  run-event-step(x) < run-event-step(y) supposing x run-lt(r) y 
  supposing ∀e:runEvents(r). fst(fst(run-info(r;e))) < run-event-step(e)
Proof
Definitions occuring in Statement : 
run-lt: run-lt(r), 
run-event-step: run-event-step(e), 
runEvents: runEvents(r), 
run-info: run-info(r;e), 
pRunType: pRunType(T.M[T]), 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
so_apply: x[s], 
pi1: fst(t), 
all: ∀x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
run-lt: run-lt(r), 
rel_plus: R+, 
infix_ap: x f y, 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
nat_plus: ℕ+, 
or: P ∨ Q, 
cand: A c∧ B, 
decidable: Dec(P), 
less_than: a < b, 
squash: ↓T, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
pi1: fst(t), 
guard: {T}, 
subtract: n - m, 
true: True
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].
    \mforall{}[x,y:runEvents(r)].    run-event-step(x)  <  run-event-step(y)  supposing  x  run-lt(r)  y 
    supposing  \mforall{}e:runEvents(r).  fst(fst(run-info(r;e)))  <  run-event-step(e)
Date html generated:
2016_05_17-AM-10_50_19
Last ObjectModification:
2016_01_18-AM-00_12_48
Theory : process-model
Home
Index