Nuprl Lemma : run-pred-step-less
∀[M:Type ⟶ Type]. ∀[r:pRunType(P.M[P])].
  ∀[x,y:runEvents(r)].  run-event-step(x) < run-event-step(y) supposing x run-pred(r) y 
  supposing ∀e:runEvents(r). fst(fst(run-info(r;e))) < run-event-step(e)
Proof
Definitions occuring in Statement : 
run-pred: run-pred(r), 
run-event-step: run-event-step(e), 
runEvents: runEvents(r), 
run-info: run-info(r;e), 
pRunType: pRunType(T.M[T]), 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
so_apply: x[s], 
pi1: fst(t), 
all: ∀x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
run-pred: run-pred(r), 
infix_ap: x f y, 
or: P ∨ Q, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
pi1: fst(t), 
Id: Id, 
sq_type: SQType(T), 
guard: {T}, 
run-event-step: run-event-step(e)
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].
    \mforall{}[x,y:runEvents(r)].    run-event-step(x)  <  run-event-step(y)  supposing  x  run-pred(r)  y 
    supposing  \mforall{}e:runEvents(r).  fst(fst(run-info(r;e)))  <  run-event-step(e)
Date html generated:
2016_05_17-AM-10_47_50
Last ObjectModification:
2015_12_29-PM-05_22_17
Theory : process-model
Home
Index