Nuprl Lemma : run-pred_wf
∀[M:Type ⟶ Type]. ∀[r:pRunType(P.M[P])].  (run-pred(r) ∈ runEvents(r) ⟶ runEvents(r) ⟶ ℙ)
Proof
Definitions occuring in Statement : 
run-pred: run-pred(r), 
runEvents: runEvents(r), 
pRunType: pRunType(T.M[T]), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
run-pred: run-pred(r), 
prop: ℙ, 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
runEvents: runEvents(r), 
uimplies: b supposing a, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
top: Top
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].    (run-pred(r)  \mmember{}  runEvents(r)  {}\mrightarrow{}  runEvents(r)  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2016_05_17-AM-10_47_16
Last ObjectModification:
2015_12_29-PM-05_22_21
Theory : process-model
Home
Index