Nuprl Lemma : run-system_wf
∀[M:Type ⟶ Type]. ∀[r:fulpRunType(P.M[P])]. ∀[t:ℕ+].  (run-system(r;t) ∈ System(P.M[P]))
Proof
Definitions occuring in Statement : 
run-system: run-system(r;t), 
fulpRunType: fulpRunType(T.M[T]), 
System: System(P.M[P]), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
fulpRunType: fulpRunType(T.M[T]), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
run-system: run-system(r;t), 
nat: ℕ, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:fulpRunType(P.M[P])].  \mforall{}[t:\mBbbN{}\msupplus{}].    (run-system(r;t)  \mmember{}  System(P.M[P]))
Date html generated:
2016_05_17-AM-10_41_27
Last ObjectModification:
2016_01_18-AM-00_14_32
Theory : process-model
Home
Index