Nuprl Lemma : run_local_pred_maximal
∀M:Type ⟶ Type. ∀r:pRunType(P.M[P]). ∀e,x:runEvents(r).
  (run-event-step(x) < run-event-step(e)
  ⇒ run-event-step(run_local_pred(r;e)) < run-event-step(x)
  ⇒ (¬(run-event-loc(x) = run-event-loc(e) ∈ Id)))
Proof
Definitions occuring in Statement : 
run_local_pred: run_local_pred(r;e), 
run-event-step: run-event-step(e), 
run-event-loc: run-event-loc(e), 
runEvents: runEvents(r), 
pRunType: pRunType(T.M[T]), 
Id: Id, 
less_than: a < b, 
so_apply: x[s], 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
runEvents: runEvents(r), 
run-event-step: run-event-step(e), 
run_local_pred: run_local_pred(r;e), 
pi2: snd(t), 
pi1: fst(t), 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
run-event-loc: run-event-loc(e), 
ge: i ≥ j , 
le: A ≤ B, 
and: P ∧ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
decidable: Dec(P), 
or: P ∨ Q, 
run-local-pred: run-local-pred(r;i;t;t'), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
has-value: (a)↓, 
nequal: a ≠ b ∈ T , 
true: True
Latex:
\mforall{}M:Type  {}\mrightarrow{}  Type.  \mforall{}r:pRunType(P.M[P]).  \mforall{}e,x:runEvents(r).
    (run-event-step(x)  <  run-event-step(e)
    {}\mRightarrow{}  run-event-step(run\_local\_pred(r;e))  <  run-event-step(x)
    {}\mRightarrow{}  (\mneg{}(run-event-loc(x)  =  run-event-loc(e))))
Date html generated:
2016_05_17-AM-10_50_01
Last ObjectModification:
2016_01_18-AM-00_13_18
Theory : process-model
Home
Index