Nuprl Lemma : run_local_pred_time
∀[M:Type ⟶ Type]. ∀r:pRunType(P.M[P]). ∀e:runEvents(r). ((fst(run_local_pred(r;e))) ≤ (fst(e)))
Proof
Definitions occuring in Statement :
run_local_pred: run_local_pred(r;e)
,
runEvents: runEvents(r)
,
pRunType: pRunType(T.M[T])
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
pi1: fst(t)
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
runEvents: runEvents(r)
,
run_local_pred: run_local_pred(r;e)
,
pi1: fst(t)
,
pi2: snd(t)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
le: A ≤ B
,
and: P ∧ Q
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
prop: ℙ
,
nat: ℕ
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
subtype_rel: A ⊆r B
,
run-local-pred: run-local-pred(r;i;t;t')
,
eq_int: (i =z j)
,
subtract: n - m
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
decidable: Dec(P)
,
or: P ∨ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
uiff: uiff(P;Q)
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
has-value: (a)↓
,
nequal: a ≠ b ∈ T
Latex:
\mforall{}[M:Type {}\mrightarrow{} Type]. \mforall{}r:pRunType(P.M[P]). \mforall{}e:runEvents(r). ((fst(run\_local\_pred(r;e))) \mleq{} (fst(e)))
Date html generated:
2016_05_17-AM-10_49_47
Last ObjectModification:
2016_01_18-AM-00_14_15
Theory : process-model
Home
Index